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Abstract

An analytical approximate solution is constructed for the primary resonance response of a periodically
excited non-linear oscillator, which is characterized by a combination of a weakly non-linear and a linear
differential equation. Without eliminating the secular terms, a valid asymptotic expansion solution for the
weakly non-linear equation is analytically determined for the case of primary resonances. Then, a
symmetric periodic solution for the overall system is obtained by imposing continuity and matching
conditions. The stability characteristic of the symmetric periodic solution is investigated by examining the
asymptotic behaviour of perturbations to the steady state solution. The validity of the developed analysis is
highlighted by comparing the first order approximate solutions with the results of numerical integration of
the original equations.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Active magnetic bearings use magnetic force to suspend a rotor. The force generated by the
magnetic actuator is inherently non-linear and is a function of the current in the stator coils and
the position of the rotor. A magnetic bearing is required to provide a larger magnetic force to
support the rotor when the rotor undergoes an unwanted larger amplitude motion. However,
physical limitations, such as saturation, prevent the force increasing beyond some practical limit.
Saturation phenomena may be manifested in a magnetic bearing as the saturation of the magnetic
material, saturation of the power amplifier, and/or the limitation of the control current. It is of
great interest to be able to determine the dynamical behaviour of a rotor suspended by a magnetic
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bearing, as an accurate knowledge of this behaviour can be used in the design of actuators and in
the fault diagnosis of the system.

Due to the weak non-linearity of magnetic force and the presence of saturation, the equations
of motion governing a rotor that is suspended even in a single-degree-of-freedom magnetic
bearing are non-linear with a piecewise non-linear–linear characteristic. It is well known in the
context of non-linear oscillations [1–5] that the steady state response of a uniformly weakly non-
linear oscillator could exhibit primary and secondary resonances phenomena, for which a small-
amplitude excitation may produce a relatively large-amplitude response. For the non-smooth
non-linear system considered here, which is mathematically modelled by a combination of a
weakly non-linear and a linear differential equation, it is anticipated that such resonances may
also occur in the steady state response of the system. Though the dynamics of piecewise linear
systems has recently been an active topic of intensive research (see Refs. [6–16] and the references
cited therein), the dynamics of a piecewise non-linear–linear system has not yet been reported in
the literature, to the authors’ knowledge.

This paper attempts to develop an approximate solution for the primary resonance response of
a periodically excited non-linear–linear oscillator. Due to the force non-smooth non-linearity in
the equations of motion, the usual perturbation method of seeking a steady state periodic solution
for a uniformly non-linear system is not applicable to the non-smooth system considered here. An
asymptotic expansion is instead used to give an approximate solution for the weakly non-linear
differential equation, which does not need to eliminate the secular terms in the first order
equation. The complete solution for the overall system comprises two parts, which correspond to
the normal operating region and the saturation zone and join at the transition points of the force
non-smooth non-linearities. More importantly, as will be seen, the first order approximate
solution is capable of providing an excellent representation of the exact solution.

2. Equations of motion

The model considered here is a two-pole, single-degree-of-freedom magnetic bearing with a pair
of opposed magnets in combination to provide forces, as discussed in Refs. [17,18]. This simple
model, as shown in Fig. 1, represents the fundamental structure for many more complicated
magnetic bearings.
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Fig. 1. A single-degree-of-freedom magnetic bearing.
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The equations of motion for an unbalanced rigid rotor can be written as

MY 00 ¼ �CY 0 þ Fmb þ MEO2
0 cosðO0TÞ; ð1Þ

where Y designates the displacement of the geometry centre of the rotor from the centre of
magnetic bearing, M is the mass of the rotor, C is the damping coefficient, Fmb is the magnetic
force, E is the mass unbalance eccentricity of the rotor, O0 is the rotating speed of the rotor, and
the prime indicates differentiation with respect to the physical time T :

In the presence of saturation, the net force resulting from the difference of attractive forces of
the two electromagnets is assumed to have the following forms:

under normal operating conditions; Fmb ¼
Ag

m0

ðB2
1 � B2

2Þ;

under the condition of saturation; Fmb ¼ 7fsat; ð2Þ

where m0 denotes the permeability of free space, Ag represents the projection area of the magnetic
pole, B1 and B2 the magnetic flux density, and fsat the maximum magnetic force. For simplicity,
magnetic flux density and field density are assumed to be uniform through the iron core and air
gap. Field fringing and leakage effects are neglected. The magnetic permeability within the iron
core is considered to be very high (infinite) compared with the permeability in the air gap. The
magnetic flux density in the air gaps is approximately of the form [19]

Bi ¼
m0NiIi

2gi

; i ¼ 1; 2; ð3Þ

where Ni are the number of coil windings ðN1 ¼ N2 ¼ NÞ; Ii represent the current flowing in the
coils, and gi denote the air gap between the rotor and magnets. The current and the air gaps can
be expressed as

I1 ¼ maxðIb þ ic; 0Þ; I2 ¼ maxðIb � ic; 0Þ;

g1 ¼ g0 þ Y ; g2 ¼ g0 � Y ; ð4Þ

where Ib and ic are the bias and control currents, respectively, and g0 is the nominal air gap
between the rotor and magnets. For simplicity, the feedback control system is assumed to generate
a current that is proportional to the rotor displacement and velocity, i.e., a PD controller, with the
form

ic ¼ kpY þ kdY 0; ð5Þ

where kp and kd represent the proportional and derivative gains, respectively. As mentioned
previously, saturation may occur in several ways and without loss of generality, it may be assumed
that saturation takes place when jkpY þ kdY 0jXIb:

Expanding the normal magnetic force in a Taylor series up to the third order about the nominal
operating conditions ðY ; icÞ ¼ ð0; 0Þ; and introducing the non-dimensional parameters y ¼ Y=g0;
t ¼ %OT in Eq. (1), yields the following equations of motion in non-dimensional form:

.y þ ðc þ dÞ ’y þ o2y þ ay3 þ ð3d � 2pdÞy2 ’y � d2y ’y2 ¼ F cosOt for jyjpys; ð6aÞ

.y þ c ’y þ Fsat sgnð yÞ ¼ F cosOt for jyjXys; ð6bÞ
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where y is the dimensionless displacement of the rotor, the dimensionless proportional and
derivative gains are defined as p ¼ kpg0=Ib; d ¼ kdg0 %O=Ib; the dimensionless damping coefficient
c ¼ C=ðM %OÞ; the dimensionless natural frequency o2 ¼ p � 1; the dimensionless forcing ampli-
tude and frequency are given by F ¼ EO2

0=ðg0 %O2Þ; O ¼ O0= %O; the dimensionless maximum
magnetic force under saturation is Fsat ¼ ð p3 � 2p2 þ 3p � 2Þ=p3; and the dot represents the dif-
ferentiation with respect to the non-dimensional time t; %O2 ¼ m0N2AgI2

b=ðMg3
0Þ; a ¼ 3p � p2 � 2:

Here, for simplicity, the upper boundary of saturation zone is set to be approximately equal to
ys ¼ 1=p instead of ys ¼ 1=p � ðd=pÞ ’ys; as the dimensionless derivative gain is much smaller than
the proportional gain in physical systems.

Roughly speaking, the overall system given by Eq. (6) may admit two kinds of solutions,
namely, a small-amplitude motion ðjyðtÞjpysÞ; and a large amplitude motion ðjyðtÞjXysÞ: For a
small-amplitude motion ðjyðtÞjpysÞ; the dynamic behaviour of the rotor is determined only by the
solution of Eq. (6a). This kind of motion is not considered in the present paper as the steady state
response can be easily obtained using the usual perturbation method [20–22]. To construct a
solution for the large-amplitude response of the overall system, it is first necessary to seek the
individual general solutions to Eqs. (6a) and (6b). Then the solutions are joined at the transition
points of the non-smooth magnetic force by implementing an appropriate set of matching
conditions. A general solution is easy to write out for the linear equation (6b). However, no exact
analytical solution to Eq. (6a) is available so an approximate solution is sought instead.

3. Approximate analytical periodic solutions

This section presents a detailed analytical procedure for developing an approximate solution for
the overall system. The analysis is based on the assumed existence of an asymptotic expansion
solution for the weakly non-linear differential equation (6a) and an exact solution for the linear
differential equation (6b). Then the approximate periodic solution for the overall system is
obtained by imposing an appropriate set of periodicity and matching conditions. It is well known
in the context of non-linear oscillations that primary resonances and secondary resonances (super-
harmonic and sub-harmonic resonances) could occur in the steady state response of a uniformly
non-linear system such as that characterized by Eq. (6a), when the natural frequency and forcing
frequency satisfy a particular relationship. In the present paper, an approximate solution under
the primary resonance conditions is sought using an asymptotic expansion.

For a large amplitude periodic response of the overall system given by Eq. (6), the motion will
enter the saturation region at least once over one period. A typical example of a large-amplitude
periodic motion will enter the saturation region twice over one period, which will be referred to
here as a doubly entering saturation region per cycle of periodic motion. In this section, emphasis
is placed on the analysis and description of such a symmetric motion, as shown in Fig. 2. The
motion consists of four distinct segments according to the following four time intervals; ½t0; t1	;
½t1; t2	; ½t2; t3	; ½t3; t4	; where ti denote the time instants that the non-smooth non-linearities of
magnetic force take place. Due to the symmetry of the solution, only two parts of the motion need
to be considered.

For the first segment of the motion, an approximate solution for the primary resonance
response is sought using an asymptotic expansion method. To use a perturbation method, the
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following variables are introduced: y ¼ e1=2x; c ¼ em; d ¼ ed; f ¼ e3=2F ; where e is a book-
keeping non-dimensional parameter. Then Eq. (6a) becomes

.x þ eðmþ dÞ ’x þ o2x þ eax3 þ e2a1x2 ’x þ e3a2x ’x2 ¼ ef cosOt for jxjpxs; ð7Þ

where a1 ¼ 3d� 2pd; a2 ¼ �d2; xs ¼ 1=ðe1=2pÞ:
It is assumed that an approximate periodic solution to Eq. (7) is a straightforward expansion

asymptotic series with respect to powers of the small parameter e [20–22]. The approximate
solution to the first order for Eq. (7) is given by

xðtÞ ¼ x0ðtÞ þ ex1ðtÞ for jxðtÞjpxs; ð8Þ

where x0ðtÞ and x1ðtÞ are functions yet to be determined. The second and higher order terms are
neglected in the asymptotic solution, although any desired higher order terms can be easily
obtained using a similar procedure.

To avoid the appearance of the small divisor terms in the first order approximate solution in the
vicinity of primary resonances, a detuning parameter is introduced according to

o2 ¼ O2 þ es; ð9Þ

where s is the external detuning, which quantitatively describes the nearness of O to o:
Substituting Eqs. (8) and (9) into Eq. (7) and equating the coefficients of like powers e0 and e on

both sides, leads to the following set of differential equations:

.x0 þ O2x0 ¼ 0; ð10Þ

.x1 þ O2x1 ¼ �ðmþ dÞ ’x0 � sx0 � ax3
0 þ f cosOt: ð11Þ

It is easy to note that as a result of ordering, excitation, damping, and dominant non-linearity
terms appear in Eq. (11). This indicates that the first order approximate solution could be capable
of providing a valid representation of the exact solution for the case of primary resonances, as
additional high order terms in the asymptotic expansion solution make a very small contribution
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Fig. 2. A symmetric period-one motion with a doubly entering saturation zone per cycle; xðtÞ denotes the segment of

motion in the normal operating region jxðtÞjpxs; yðtÞ represents the segment in the saturation region jyðtÞjXys; t0
denotes the starting time, and tiði ¼ 1; 2; 3; 4:Þ the time instants that the non-smooth non-linearities take place, 7ys

indicate the boundaries of saturation zone.
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to the expansion solution. In fact, as will be seen, the first order asymptotic solution is an excellent
approximation to the primary resonance response of the system.

The solution to the homogeneous linear equation (10) can be written as

x0ðtÞ ¼ A1 sinOðt � t0Þ þ B1 cosOðt � t0Þ; ð12Þ

where A1; B1 and t0 are constants to be determined. Substituting Eq. (12) into Eq. (11) and solving
the resultant inhomogeneous equation gives rise to the general solution x1ðtÞ as

x1ðtÞ ¼ l1 sinOðt � t0Þ þ l2 cosOðt � t0Þ þ k1ðt � t0Þ sinOðt � t0Þ þ k2ðt � t0Þ cosOðt � t0Þ

þ f1t sinOt þ k3 sin 3Oðt � t0Þ þ k4 cos 3Oðt � t0Þ; ð13Þ

where the coefficients l1; l2; ki and f1 are defined in Appendix A. Here, it has been assumed that the
steady state response starts at time instant t0 from the initial condition xðt0Þ ¼ �xs and remains
thereafter in the normal operating region jxðtÞjpxs until moment t1: Since the origin of the
starting time has been set by a choice of the forcing term in Eqs. (13), it is not possible to set
t0 ¼ 0: It is easy to see from Eq. (13) that three secular terms do not have enough time to grow and
lead to an unbounded response in the steady state response, because both the time interval
ðt1 � t0ÞAð0; p=OÞ and time tA½t0; t1	 for undergoing this motion are finite and small. Thus, the
nominal secular terms in the solution expressions need not be eliminated properly as is necessary
when the usual perturbation method is applicable for seeking an approximate solution for a
uniformly weakly non-linear equation [1–5].

For the second segment of the motion, the solution to the linear equation (6b) can be expressed
in the form

yðtÞ ¼ A2e
�cðt�t1Þ þ B2 þ mðt � t1Þ þ G sinOt þ H cosOt for jyðtÞjXys; ð14Þ

where A2; B2 and t1 are constants to be determined, m ¼ �Fsat sgnð yÞ=c; G ¼ cf =Oðc2 þ O2Þ;
H ¼ �f =ðc2 þ O2Þ:

At this point it is clear that there are six unknowns associated with the problem; that is, four
constants A1; B1; A2; B2; and two crossing times t0 and t1: These constants can be determined by
implementing an appropriate set of initial conditions as well as periodicity, continuity and
symmetry conditions, which can be expressed as follows:

xðt0Þ ¼ �xs; xðt1Þ ¼ xs; yðt1Þ ¼ e1=2xs; ’yðt1Þ ¼ e1=2 ’xðt1Þ

yðt2Þ ¼ e1=2xs; ’yðt2Þ ¼ �e1=2 ’xðt0Þ; t2 ¼
p
O
þ t0: ð15a–gÞ

Here, the last two conditions arise from the symmetry of the solution being examined. The four
unknown constants Ai; Bi ði ¼ 1; 2Þ can be determined as functions of the system parameters and
two crossing times t0 and t1 by imposing conditions (15a, c, e, f). Then substituting these constants
into the corresponding solutions and imposing conditions (15b,d) yields a set of two
transcendental equations for unknown t0 and t1 as follows:

h11S10 þ h12C10 þ h13 sinOt1 þ h15S30 þ h16C30 ¼ xs;

h21S10 þ h22C10 þ h23 sinOt1 þ h24 cosOt1 þ h25S30 þ h26C30 ¼ m � cA2; ð16Þ

where the coefficients S10; C10; S30; C30; and hij are given in Appendix B.
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Eq. (16) involves system parameters and two unknown crossing times t0 and t1 only. It is
evident that no analytical solutions to Eq. (16) can be found, and thus numerical means have to be
adopted to solve the crossing times for all possible solutions. The constants Ai; Bi ði ¼ 1; 2Þ can be
evaluated after obtaining an appropriate value for the time instants t0 and t1: Then the
corresponding histories of xðtÞ and yðtÞ can be calculated from Eqs. (8) and (14). This procedure
completes the determination of the symmetric periodic solution with a doubly entering saturation
region per cycle.

4. Stability of the periodic solutions

Due to the non-smooth non-linearities of magnetic force occurring at the boundaries of the
saturation region, the stability of the periodic solution can only be determined by investigating the
asymptotic behaviour of perturbations to the steady state periodic solution, as the usual method
involving the classical Floquet theory is not applicable to such a non-smooth system.

Let X ðtÞ and zðtÞ denote the corresponding perturbed solutions to xðtÞ and yðtÞ; respectively.
Performing a similar procedure as used in determining the approximate solution, the first order
approximate perturbed solution of the first segment under the perturbed initial conditions, X ðt0 þ
Dt0Þ ¼ �xs; ’Xðt0 þ Dt0Þ ¼ v0 þ Dv0; can be written as

X ðtÞ ¼ X0ðtÞ þ eX1ðtÞ for jX ðtÞjpxs ð17Þ

with

X0ðtÞ ¼ P1 sinOtþ Q1 cosOt; ð18Þ

X1ðtÞ ¼L1 sinOtþ L2 cosOtþ K1t sinOtþ K2t cosOtþ f1t sinOt

þ K3 sin 3Otþ K4 cos 3Ot; ð19Þ

where t ¼ t � t0 � Dt0; v0 represents the initial velocity of the response at time t0; and the
operator, D; denotes a small perturbation of the operand. Since the perturbations in the initial
conditions are assumed to be small, it is expected that the coefficients in Eqs. (18) and (19) will
assume values close to those of the unperturbed motions, respectively [23]. To the first order, the
coefficients in Eq. (18) are given by

P1 ¼ P þ Dv0=O; Q1 ¼ Q; ð20Þ

where P ¼ v0=O; Q ¼ �xs; are determined by applying the unperturbed initial conditions X ðt0Þ ¼
�xs; ’Xðt0Þ ¼ v0; in the corresponding unperturbed solution. The coefficients in Eq. (19) can be
expressed as

Li ¼ Li0 þ li1Dv0 þ li2Dt0; i ¼ 1; 2;

Kj ¼ Kj0 þ kj1Dv0; j ¼ 1; 2; 3; 4; ð21Þ

where the coefficients Li0; li1; li2; Kj0; and kj1 are defined in Appendix C.
At the time instant, t ¼ t1 þ Dt1; the motion of the first segment reaches the upper boundary of

the saturation region and will enter the saturation zone thereafter. The perturbed response at the
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moment of entrance is assumed to be

X ðt1 þ Dt1Þ ¼ xs; ’Xðt1 þ Dt1Þ ¼ v1 þ Dv1; ð22Þ

where v1 represents the velocity of the unperturbed response of the first segment at t1:
Substituting Eq. (17) into Eq. (22) and keeping only the first order terms yields

a11Dt1 þ a12Dt0 þ a13Dv0 ¼ 0;

Dv1 ¼ a21Dt1 þ a22Dt0 þ a23Dv0; ð23Þ

where the coefficients aij are given in Appendix D.
The asymptotic behaviour of the perturbed motion for the second segment of the response from

time ðt1 þ Dt1Þ to ðt2 þ Dt2Þ can be investigated using the same procedure performed as that for
the first segment. Similarly, the solution under the perturbed initial conditions, zðt1 þ Dt1Þ ¼
e1=2xs; ’zðt1 þ Dt1Þ ¼ e1=2ðv1 þ Dv1Þ; can be written in the form

zðtÞ ¼ P2e
�cðt�t1�Dt1Þ þ Q2 þ mðt � t1 � Dt1Þ þ G sinOt þ H cosOt; ð24Þ

where the coefficients P2 and Q2 are given in Appendix E.
The perturbed response at the time instant ðt2 þ Dt2Þ is assumed to be

zðt2 þ Dt2Þ ¼ e1=2xs; ’zðt2 þ Dt2Þ ¼ e1=2ðv2 þ Dv2Þ; ð25Þ

where e1=2v2 denotes the velocity of the unperturbed response of the second segment at t2:
Substituting Eq. (24) into Eq. (25), performing some algebraic manipulations and retaining

terms up to the first order, yields the following equations:

b11Dt2 þ b12Dt1 þ b13Dv1 ¼ 0;

Dv2 ¼ ðb21Dt2 þ b22Dt1 þ b23Dv1Þ=e1=2; ð26Þ

where the coefficients bij are defined in Appendix F.
Eqs. (23) and (26) can be expressed in matrix form as

Dt1

Dv1

" #
¼ R

Dt0

Dv0

" #
;

Dt2

Dv2

" #
¼ U

Dt1

Dv1

" #
; ð27Þ

where R is a 2 
 2 matrix with elements, r11 ¼ �a12=a11; r12 ¼ �a13=a11; r21 ¼ a22 � a21a12=a11;
r22 ¼ a23 � a21a13=a11; respectively, and U is a 2
 2 matrix with elements, u11 ¼ �b12=b11; u12 ¼
�b13=b11; u21 ¼ ðb22 � b21b12=b11Þ=e1=2; u22 ¼ ðb23 � b21b13=b11Þ=e1=2; respectively.

The small perturbations of the symmetric solution during the first half-period of the motion are
obtained by combining the two equations given by Eq. (27) to form an equation

Dt2

Dv2

" #
¼ J

Dt0

Dv0

" #
; ð28Þ

where J represents the transition matrix for the response from time instant ðt0 þ Dt0Þ to ðt2 þ Dt2Þ;
and is given by J ¼ RU : The stability of the steady state solution is determined by the eigenvalues
of this transition matrix. Denoting the trace of J by TJ and the determinant of J by DJ; the two
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eigenvalues of the matrix are given by

l1;2 ¼ 1
2
½TJ7ðTJ2 � 4DJÞ1=2	: ð29Þ

The symmetric period-one motion is asymptotically stable if both eigenvalues l1 and l2 of matrix
J have a modulus less than unity. When either of the two eigenvalues has a modulus greater than
one, the solution is unstable. From the proceeding discussion, it may be deduced that all elements
of matrix J are functions of the system parameters and the crossing times, which cannot be given
explicitly. This means that it is not possible to obtain explicit expressions in terms of the system
parameters for the trace and determinant of matrix J: Nevertheless, by substituting the
expressions for the elements of matrices R and U and performing some algebraic manipulations,
the determinants of matrices R and U ; namely DR and DU ; may be eventually expressed in a
simple form as

DR ¼ ½1 � eðmþ dÞt10 þ Oðe2Þ	
’xðt0Þ
’xðt1Þ

; DU ¼ e�cðt2�t1Þ ’yðt1Þ
’yðt2Þ

: ð30Þ

By imposing continuity and periodicity conditions of the symmetric solution, i.e., ’yðt1Þ ¼ e1=2 ’xðt1Þ;
’yðt2Þ ¼ �e1=2 ’xðt0Þ; the determinant of matrix J; as the product of the traces of matrices R and U ; is
of a quite simple form:

DJ ¼ �e�cðt2�t1Þ½1� eðmþ dÞt10 þ Oðe2Þ	: ð31Þ

Based on the fact that the dimensionless damping coefficient c (i.e., em) and the dimensionless
derivative gain d (i.e., ed) are positive and much smaller than unity for a practical example, and
that j1� eðmþ dÞt10 þ Oðe2Þjo1 always holds, it can be concluded from Eq. (31) that jDJ jo1: This
indicates that no Hopf bifurcation is possible in the symmetric motion examined for a practical
system. As the system parameters are changed, the modulus of one eigenvalue may take the value
of unity, where a bifurcation occurs. One possible way for an eigenvalue to cross the unit circle is
through +1, which corresponds to a saddle-node, pitchfork or transcritical bifurcation. The other
way is through �1; which relates to a period-doubling bifurcation. The stability boundaries
l ¼ 71 can be established by solving the equation:

DJ8TJ þ 1 ¼ 0: ð32Þ

It may be noted that Eq. (32) involves trigonometric and exponential function terms which
depend on the crossing times t1 and t0: This implies that the stability diagrams cannot be built up
analytically. In addition, since the determination of t1 and t0 depends on the roots of the two
transendental equations given by Eq. (16), a numerical construction of the stability diagrams will
be an extremely laborious task. Thus the construction of stability diagrams is not pursued in the
present work.

5. Comparison of the approximate and exact solutions

To validate the present analytical results, the symmetric periodic solutions determined by the
developed analysis were compared with the exact solutions. The classical fourth order Runge–
Kutta algorithm was employed to perform the numerical integration of Eq. (6). It was found that
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the approximate solutions obtained by the developed analysis and the exact numerical solutions
are in an excellent agreement for the case of primary resonances.

An approximate solution and its stability can be easily constructed and examined using the
methodology developed in Sections 3 and 4. For example, in the case c ¼ 0:1; d ¼ 0:3; p ¼ 1:4;
F ¼ 0:4; O ¼ 0:65; and e ¼ 1:0; the analysis in Section 3 gives that t0 ¼ 0:397921; t1 ¼ 1:683299:
The coefficients in Eqs. (12)–(14) can be easily obtained by a back substitution. Then the solution
expressions can be easily written out. Two eigenvalues of the transition matrix J for the solution
are calculated to be l1 ¼ 0:48002; l2 ¼ �0:72654; which indicates the approximate solution is
stable. Fig. 3 shows the phase portraits of the analytical approximate solution and exact solution
obtained from numerical integration. The solid curve indicates the results of numerical integration
and the circles represent the approximate solution. The differences between the approximate and
exact solutions are very small. The approximate solution is in good agreement with the exact
solution. The dashed curve in Fig. 3 represents the results of numerical integration of the
corresponding linear equation when the non-linearity terms in Eq. (6a) are neglected. It is noted
that the solution of the corresponding linear system is not able to be a representation to the
solution of the non-linear system.

Fig. 4 shows the maximum amplitudes of the dynamic response of two systems with the
variation of the dimensionless proportional gain p in the region pA½1:81; 2:21	; which corresponds
to the external detuning in the region sA½�0:19; 0:21	: The system parameters for System I are
d ¼ 0:05; c ¼ 0:05; F ¼ 0:25; O ¼ 1:0; e ¼ 1:0; and those for System II are d ¼ 0:2; c ¼ 0:2;
F ¼ 0:45; O ¼ 1:0; e ¼ 1:0; respectively. The circles in Fig. 4 indicate values of the amplitudes
obtained by the developed analysis and triangles indicate the numerical simulation values. The
discrepancies between the first order approximate analytical solutions and exact numerical
solutions are between �0:036% and �0:047% for System I, and between 0:504% and 0:741% for
System II.
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Fig. 3. The phase portraits of the approximate and exact solution; solid curve indicates the direct numerical integration

results, circles represent the analytical approximate solution, dashed curve denotes the numerical results of integration

of the corresponding linear equations.
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Fig. 5 shows the maximum amplitude of the response of Systems III and IV with the variation
of the dimensionless forcing frequency in the region OA½1:85; 2:15	; which corresponds to the
external detuning in the region sA½�0:5775; 0:6225	: The system parameters for System III are
c ¼ 0:05; d ¼ 0:05; p ¼ 5:0; F ¼ 0:9; e ¼ 1:0; and those for System IV are c ¼ 0:2; d ¼ 0:6; p ¼ 5:0;
F ¼ 1:25; e ¼ 1:0: The discrepancies between the approximate and exact solutions for System III
are between 0:023% and 0:053%; and between 0:468% and 0:578% for System IV. The differences
between the approximate and exact solutions for small values of the system parameters are hardly
distinguishable by the naked eye (as shown in Figs. 4(a) and 5(a)). For large values of the system
parameters, the approximate solutions give slightly smaller values of the maximum response
amplitude than those of the exact solutions (as shown in Figs. 4(b) and 5(b)). The first order
approximate solutions match well with the numerical exact solutions.

It can be concluded from Figs. 4 and 5 that only small differences between the first
order approximate and exact solutions are found. The first order approximate solutions can
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Fig. 4. The variation of the maximum amplitudes of the response of the overall system given by Eq. (6) with the

proportional gain p; Circles denote the approximate solutions and triangles represent results of the numerical

integration: (a) System I, (b) System II.
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give excellent representations of the exact solutions. Additional higher order terms may be
included in the approximate solution if a solution of higher accuracy is required, but it seems
unnecessary.

6. Conclusion

An approximate periodic solution of a piecewise non-linear–linear oscillator has been
analytically determined using a new methodology, as no exact solution exists in closed form.
The mathematical model of the oscillator is characterized by a combination of a weakly non-
linear and a linear differential equation. More specially, the response of the weakly non-linear
system is studied for the case of primary resonances, which may lead to secular terms in the steady
state response of a uniformly weakly non-linear system. The methodology developed here
involved combining an asymptotic expansion solution to the weakly non-linear system and an

ARTICLE IN PRESS

Fig. 5. The variation of the maximum amplitudes of the response of the overall system given by Eq. (6) with the forcing

frequency O; circles denote the approximate solutions and triangles represent results of the numerical integration:

(a) System III, (b) System IV.
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exact solution to the linear system. By imposing an appropriate set of matching and periodicity
conditions, the task of determining a periodic symmetric solution with a doubly entering
saturation zone per cycle was eventually reduced to a set of two transcendental algebraic
equations. The stability characteristic of the symmetric solution was based on examining the
propagation of small perturbations in the initial conditions over a half-period of the response. The
accuracy of the first order approximate solutions was confirmed by comparison with the results
obtained by direct integration of the original equations of motion. More importantly, the
methodology developed can be applied to other types of non-smooth systems, which are
characterized by different forms of equations of motion.
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Appendix A

The coefficients in Eq. (13) are

k1 ¼ �ðmþ dÞA1=2 � sB1=2O� 3aðA2
1B1 þ A3

1Þ=8O;

k2 ¼ �ðmþ dÞB1=2 þ sA1=2Oþ 3aðA1B2
1 þ A3

1Þ=8O;

k3 ¼ að3A1B2
1 � A3

1Þ=32O
2; k4 ¼ aðB3

1 � 3A2
1B1Þ=32O2; f1 ¼ f =2O;

l1 ¼ �ðk2 þ 3Ok3 þ f1 sinOt0 þ Of1t0 cosOt0Þ=O; l2 ¼ �k4 � f1t0 sinOt0:

Appendix B

The coefficients in Eq. (16) are

S10 ¼ sinOt10; C10 ¼ cosOt10; S30 ¼ sin 3Ot10; C30 ¼ cos 3Ot10;

h11 ¼ A1 þ el1 þ ek1t10; h12 ¼ B1 þ el2 þ ek2t10; h13 ¼ ef1t1; h15 ¼ ek3; h16 ¼ ek4;

h21 ¼ e1=2ðek1 � OB1 � eOl2 � eOk2t10Þ; h22 ¼ e1=2ðOA1 þ eOl1 þ ek2 þ eOk1t10Þ;

h23 ¼ e3=2f1 þ OH; h24 ¼ e3=2Of1t1 � OG; h25 ¼ �e3=23Ok4; h26 ¼ e3=23Ok3;

with

A1 ¼ ½cA2e
�cðp=O�t10Þ � m þ OG cosOt0 � OH sinOt0	=ðe1=2OÞ; B1 ¼ �xs;

A2 ¼ ½GðsinOt0 þ sinOt1Þ þ HðcosOt0 þ cosOt1Þ � mðp=O� t10Þ	=½e�cðp=O�t10Þ � 1	;

B2 ¼ e1=2xs � A2 � G sinOt1 � H cosOt1; t10 ¼ t1 � t0:
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Appendix C

The coefficients in Eq. (21) are

K10 ¼ �ðmþ dÞP=2� sQ=2O� 3aðP2Q þ Q3Þ=8O;

k11 ¼ �ðmþ dÞ=2O� 3aPQ=4O2;

K20 ¼ �ðmþ dÞQ=2þ sP=2Oþ 3aðPQ2 þ P3Þ=8O;

k21 ¼ ðsþ 3aQ2=4 þ 9aP2=4Þ=2O2; K30 ¼ að3PQ2 � P3Þ=32O2;

k31 ¼ 3aðQ2 � P2Þ=32O3; K40 ¼ aðQ3 � 3P2QÞ=32O2;

k41 ¼ �3aPQ=16O3; L10 ¼ �ðK20 þ 3OK30 þ f1 sinOt0 þ Of1t0 cosOt0Þ=O;

l11 ¼ �ðk21 þ 3Ok31Þ=O; l12 ¼ Of1t0 sinOt0 � 2f1 cosOt0;

L20 ¼ �K40 � f1t0 sinOt0; l21 ¼ �k41; l22 ¼ �f1 sinOt0 � Of1t0 cosOt0:

Appendix D

The coefficients in Eq. (23) are

a11 ¼POC10 � QOS10 þ eðOL10C10 � OL20S10 þ K10Ot10C10 þ K10S10 � K20Ot10S10 þ K20C10

þ 3OK30C30 � 3OK40S30 þ f1 sinOt1 þ Of1t1 cosOt1Þ;

a12 ¼ � POC10 þ QOS10 þ eð�OL10C10 þ OL20S10 � K10Ot10C10 � K10S10 þ K20Ot10S10

� K20C10 þ l12S10 þ l22C10 � 3OK30C30 þ 3OK40S30Þ;

a13 ¼ S10=Oþ eðl11S10 þ l21C10 þ k11t10S10 þ k21t10C10 þ k31S30 þ k41C30Þ;

a21 ¼ �PO2S10 � QO2C10 þ eð�L10O2S10 � L20O2C10 þ 2K10OC10 � K10O2t10S10 � 2K20OS10

� K20O2t10C10 � 9K30O2S30 � 9K40O2C30 þ 2f1O cosOt1 � O2f1t1 sinOt1Þ;

a22 ¼PO2S10 þ QO2C10 þ eðL10O2S10 þ L20O2C10 � 2K10OC10 þ K10O2t10S10 þ 2K20OS10

þ K20O2t10C10 þ 9K30O2S30 þ 9K40O2C30 þ l12OC10 � l22OS10Þ;

a23 ¼C10 þ eðl11OC10 � l21OS10 þ k11S10 þ k11Ot10C10 þ k21C10 � k21Ot10S10 þ 3Ok31C30

� 3Ok41S30Þ:

Appendix E

The coefficients in Eq. (24) are

P2 ¼ P0 þ A21Dt1 þ A22Dv1; Q2 ¼ Q0 þ B21Dt1 þ B22Dv1;
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where

P0 ¼ ðm þ OG cosOt1 � OH sinOt1 � e1=2v1Þ=c;

Q0 ¼ e1=2xs � G sinOt1 � H cosOt1 � P0;

A21 ¼ �O2ðG sinOt1 þ H cosOt1Þ=c; A22 ¼ �e1=2=c;

B21 ¼ O½ðcH þ OGÞ sinOt1 � ðcG � OHÞ cosOt1	=c; B22 ¼ e1=2=c:

Appendix F

The coefficients in Eq. (26) are

b11 ¼ m � cP0e
�cðt2�t1Þ þ OG cosOt2 � OH sinOt2;

b12 ¼ B21 � m þ ðcP0 þ A21Þe�cðt2�t1Þ; b13 ¼ B22 þ A22e
�cðt2�t1Þ;

b21 ¼ c2P0e
�cðt2�t1Þ � O2G sinOt2 � O2H cosOt2;

b22 ¼ �ðc2P0 þ cA21Þe�cðt2�t1Þ; b23 ¼ �cA22e
�cðt2�t1Þ:
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